If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-31x+169=0
a = 1; b = -31; c = +169;
Δ = b2-4ac
Δ = -312-4·1·169
Δ = 285
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-31)-\sqrt{285}}{2*1}=\frac{31-\sqrt{285}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-31)+\sqrt{285}}{2*1}=\frac{31+\sqrt{285}}{2} $
| 25x-x^2=10 | | 10^(z+4)+10^(z+3)=11 | | 10^z+4+10^z+3=11 | | 16t^2+130t+70=30 | | 30+2=4x+8 | | 30=16t^2+130t+70 | | 1x^2-14x=0 | | 18-5x=2x-17 | | 12x-62=7x+108 | | 440=x(4x+5) | | 2(4y+1)+3y=13 | | 58.4x+70.7(x+16)=70(2x+16) | | 3b*b-28b+49=0 | | 9x-12(.75x+2)=-24 | | 4a*a-18a-10=0 | | -14+5x=4x+23 | | 58.4x+70.7*(16+x)=70*(16+2x) | | 8x*x-2x-3=0 | | 58.4x+(70.7*(16+x))=70*(16+2x) | | 16y*y-2y-3=0 | | 7a*a+65a+18=0 | | 12x*x+8x-15=0 | | 9x*x-18x-7=0 | | 12c=132 | | 2p*p+21p+40=0 | | 0=-16x^2+112x+6 | | 260=2x^2+9x | | 8x*x+2x-3=0 | | 4x*x-x-3=0 | | 0=-16x+112x+6 | | 260=x(2x+9) | | 5/13n=15/26 |